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INTRODUCTION

This report consists of two papers which resulted from the work supported

by Contract N00014-77-C-0390 from the Office of Naval Research.

(1) Grain contacts, disordered microstructure, and dynamic frame modulii in

granular sediments.

(2) Micromechanics of acoustic dissipation in fully and partially water

saturated granular sedimentary materials.
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1. INTRODUCTION

Hamilton's pioneering work in geoacoustics (1970, 1971, 1974a,b,

1976a, 1978, 1979a,b, 1980a) has shown the velocities of marine sedi-

ments to be strongly dependent on porosity, granular fabric, and depth.

Particularly sensitive to stress conditions and grain size appears

to be the shear velocity, V . Predictive estimates, laboratory experi-
5

ments, and in situ measurements exhibit an order of magnitude scatter.

The depth dependence of Vs  in water saturated sands and silts has been

measured anywhere from a 1/3 to a 1/8 power of pressure. Reliable pre-

dictive knowledge of V5  is important because the rigidity has been

?arts to be submitted to the Journal of Geophysical Research and
Journal of the Acoustical Society of Aerica in July, 1982.
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shown to contribute significantly to the sediment-water reflection

coefficient (Hamilton 1971, 1974, 1978). Its depth gradient, av

is an important factor in the refraction of low frequency sound through

the ocean floor (Christensen et al., 1975; Hamilton, 1976, 1978, 1980;

Fryer, 1981). Shear velocity also holds interest as a possible measure

of the nonlinear response and liquefaction potentialof coastal and

offshore foundations to earthquakes and storm waves (Bea, 1978; Woods,

1978; Hardin, 1978; Stokoe, 1978; Anderson et al., 1978).

The compressional velocity V in marine sediments appears to vary
p

quite simply with porosity. Yet attempts thus far to convert interval

velocities to formation porosities on the basis of simple averaging

models (eg. the time average equation (Wyllie et al., 1956, 1958)) have

been unsatisfactory (Geertsma and Smit, 1961; Telford et al., 1976;

Watt et al., 1976). V in water saturated sands is dependent on the
pv

effective pressure (Domenico, 1977) and the depth gradient, -- ,

has been studied extensively in situ. However, no theory has been

proposed which has satisfactorily explained the measurements (Brandt,

1960; White, 1965; Walton, 1975; Stoll, 1980; Digby, 1982).

Gassmann (1951a), Blot (1956), and Brown and Korringa (1975) have

shown theoretically that in a macroscopically homogeneous porous media

at low acoustic (<500 Hz) and seismic frequencies (figure 1), the de-

pendence of V and Vs on microstructure is contained solely within

the porosity and the dynamic frame moduli.

BMot's (1956) theory is frequency dependent, attempting to cover

the entire range of interest (figure 1). It requires an additional

parameter, the so-called structure factor, a. The structure factor,

a , is a measure of the pore geometry similar to a tortuosityor an

3
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Fig. 1. Spectrum of geoacoustic interest.
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index of refraction (Johnson, 1980; Johnson and Sen, 1982). a enters

Biot's theory in the inertial coupling of the pore fluid to the solid

frame and drops out in the low frequency limit, the Biot-Gassmann relations.

a's significance in the ultrasonic range is under extensive study else-

where (D.L. Johnson, personal communication).

The porosity. 0, is the ratio of the pore volume to the total

of the material and is a function of the packing.

The dynamic frame moduli represent the macroscopic or effective

stiffness of the granular frame. Neglecting clays and other compositional

impurities, we may say that in granular sediments, these stiffnesses

result from the tangential contact of elastic quartz grains embedded

in a disordered packing. The porosity is related to the frame moduli

through the coordination number, i.e. the number of contacts per grain.

Understanding how grain contacts and disordered packing determine the

dynamic frame moduli is an important step in predicting the acoustic

velocities of marine sediments on the one hand, and deciphering the

microstructural information contained in measured velocities on the

other.

'The purpose of this paper is to explain the effects of granular

microstructure and effective pressure on low frequency vleocities in

water saturated granular materials. Micromechanical models are devel-

oped for the dry frame moduli. Unambiguous predictions are stated

explicitly for Vr., V, and V/V as a function of grain character-
p spsa

istics, porosity, and effective pressure. The predictions of each step

are systematically tested by laboratory measurements of V, and V8

in glass beads and quartz sands. Signal velocities were measured by

an ultrasonic pulse transmission technique (similar to that of Elliott
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and Wiley, 1975) at frequencies -200 kHz. All measurements were

obtained in vacuum dry (<lOjm) samples. Although signal velocities are

generally equivalent to group velocities in dissipative media (Horse

and Ingard, 1968), we are aware of no evidence for dispersion in vacuum

dry samples of similar composition. Errors in the moduli are expected

to be less than 5%. These moduli are in fact frequency-independent,

dry frame moduli and as such are expected to apply acrosbseismic, acoustic,

and ultrasonic frequency ranges.

We find that the low frequency, dynamic frame moduli in granular

sediments are determined by the grain contact area. At low pressures,

the increase in contact area is dominated by the increasein actual

contacts per grain. A compaction model is proposed based on the trans-

formation of a Gaussian radial distribution function with pressure.

In the high pressure limit where coordination number is constant, gran-

ular sediments are well described as a disordered, Hertz-Mindlin granular

material. When input into the Biot-Gassmann relations, predictions fit

a set of compiled in situ data remarkably well.

2. THE PROBLEM

In situ measurements of V versus porosity in ocean bottom sedi-P

ments are shown in figure 2. The data are taken from Hamilton (1971,

1974b) and Smith (1974). V declines gradually with increasingp

porosity. Scatter is generally less than 5% reaching a maximum of 12%

at 0 - 0.45. Figure 3 gives in situ Vs versus porosity. It is

important to note that Hamilton's data are actually calculated from VP

assuming a hypothetical bulk frame modulus (1971), yet this methodological

fact is omitted from Anderson and Hampton's recent (1980) replot of the

6
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Fig. 2. Compiled measurements of V vs. porosity in marine sedi-p

ments. Hamilton's (1971, 1974b) data is from North

Pacific sediments, while Smith's (1974) data is from

the North Atlantic sediments.
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Fig. 3. Compiled data for V avs. porosity in in situ sediments.

Hamilton's (1971, 1974b) data was calculated from V

assuming a hypothetical bulk frame modulus. Smith's

(1974) techniques were unspecified. Well documented

in situ geotechnical measurements ( 0 ) are from Anderson

et al. (1978), Arango et al. (1978), Kudo and Shima

(1970), Hamilton (1976), Barker (1962), Stokoe and Woods

(1973), Cunny and Fry (1976), Warrick (1974), and

Wilson et al. (1978).
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data (their figure 3). Smith's data was first presented in 1974 without f

description of the measurement technqiues. Smith's data has also been

replotted in the same figure 3 of Anderson and Hampton (1980). In

figure 3 of this paper the "compiled" in situ measurements are taken

from the geotechnical literature for water saturated sediments, in which

the measurement technqiues are fully and explicitly documented. Figure

4 gives the measured porosity in marine sediments versus grain size in

microns. The grain size scale is based on a negative logarithm to the

base 2, which is equivalent to the phi grain size scale used in sedi-

mentology. The roughly linear plot implies that if the data presented

in figures 2 and 3 were plotted against grain size (log to the base 2),

homologous effects would be observed.

At low frequency, V and V are governed by the Biot-Gassmannp s

relations in which

M 1/2 N 1/2
V -(-) " (1)

where Mr  is the low frequency or relaxed compressional wave modulus

given by

- )2(K s - Tr 4
Mr - K K + K + i 1w (2)

K su- - K, + 0-Ks

6 f

when Nr is the low frequency or relaxed shear wave modulus given by

Nr a Pwr (3)

and pc is the composite density given by

9
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pc - (1l- €)p + *SwQ ( )
PC U OP OS w Pw(4

K is the bulk modulus of the solid grains, ps is the density of the

solid grains, p w is the density of the water, and Sw  is the water

saturation which is equal to 1.0 in a fully saturated material. Kf

is the bulk modulus of the pore fluid given by

1 " (l - S) +8TSw  (5)
Kf g

where Bg is the compressibility of the gas and w  is the compres-

sibility of the water.

Kwr and 1wr are the real parts of the relaxed bulk and shear

water-wetted frame moduli, respectively. They replace the more ambiguous

"frame moduli of the bulk material" of say, Geertsma and Smit (1961).

We have observed (e.g. Hardin and Richart, 1963; Spencer, 1981; Murphy,

1982a) a strong modulus defect in sands and sandstones at low acoustic

frequencies with the addition of small amounts of moisture. In general,

the bulk and shear frame moduli, K and G, respectively, are complex

and strongly frequency dependent on water saturation and frequency as

shown in figure 5. These effects of water saturation and frequency

are the subject of the related papers (Murphy, 1982a; Murphy, 1982b,

Murphy and Nur, 1982a).

In this paper, we focus on i) the dry bulk and shear frame moduli,

Kd and d' respectively, which are independent of frequency, and ii)

the softening of Kd and p d to Kwr and pwr While it is necessary

to predict the low frequency softening in order to test agreement with

in situ data, our primary objective is to understand how grain charac-

teristics and granular microstructure determine K d and t d"

11
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Fig. S. Theoretical dispersion, as a function of water saturation,

of the real part of the frame modulus normalized to the

real part of the relaxed frame modulus. In granular sedi-

mentary materials, T-1 -3~ - 10 -4sec. In this paper,

we focus on the dry frame moduli, and the relaxed wetted

frame moduli. Dispersion is neglected.
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Microstructure may be decomposed ii,to two categories of relations.

The relations between two adjacent individual grains in contact or near

contact are called contact theory. The relations between an individual

grain and the aggregate of grains are called packing theory. Development

of these theories leads to unambiguous predictions for the effects of

grain size, shape, and size distribution, as well as for the effects of

porosity and effective pressure. All of which are directly testable

by simple experiment.

Digression

This problem is intimately related to the nature of the seismic

properties of the shallow lunar crust which have been studied by Warren

and Anderson (1973), Talwani et al. (1973), Gangi (1981), Johnson et al.

(1982), and most notably by Tittmann et al. (1972, 1976, 1977, 1978,

1979). The results of this work are applied to lunar problems in a

subsequent article (Murphy and Nur, 1982b).

3. HERTZ-MINDLIN THEORY OF SMOOTH ELASTIC SPHERES IN CONTACT

Consider two identical smooth elastic spheres in tangential con-

tact at a point (fig. 6a). The application of a finite force normal to the

plane of contact results in a circular area of contact (fig. 6b). We assume

that the radius of the contact is small compared to the radii of the

spheres. The classical theory of Hertz (Timoshenko and Goodier, 1951)

shows the relation between the normal contact force, n, and the radius

of the area of contact, a, to be

a - 3(1-v)nR 1/3
er R (6)

where R is the radius of the grains, and v and Uj are, respectively,

....... 1 ,



(a) (b)

02

Fig. 6. Elastic spheres in contact.

a) unstressed state,

b) spheres pressed together under normal force, n, applied

along the z axis. Circular contact area of radius, a,

is formed. An and At are small (i.e. An, At << n) increments

of applied normal and shear stress, respectively, super-

imposed on n.
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the Poisson's ratio and the rigidity (i.e., shear modulus) of the

2/3material of the grains. The contact area, A, varies with n

The distribution of pressure (fig. 6c) on the contact is

3n 2 2 1/2iC 2-33 (a2  r )  (7)

The relative displacement of the centers of the spheres under the

imposition of n, or normal approach is

a - 2 [ 3(1-v)n 2 3  (8)

From equations (6) and (8), we obtain for the normal compliance, Jn

T a 1-V(9
Jn dn 2;a (9)

Mindlin extended the theory to include an additional component of

force, t, tangential to the contact surface where t < fn. With the

application of t, regardless of how small t may be, slip is expected

to occur on the contact surface. An infinite traction would otherwise

be required along the circumference of the area of contact. Slip

begins at the contact circumference and progresses radially inward.

The region on which slip occurs (fig. 6c) is an annulus of outer radius,

a, and an inner radius, c, given by

c - a (1 -t ) 1/3 (10)
fn

where f is the coefficient of friction of the material of the grains.

The distribution of tangential traction on the contact area (fig. 7) is

15
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3 (ar2) / 2

3fn 2 2

2Ta 3 c < r < a

3fn (a2_r2 )1/2 (c2 _r2)1/21 r C a
27~a

The relative displacement of the centers of the two spheres is

3fn(2-v) 2/3I [I - (i - L- ) I . (12)

Thus, the tangential compliance is

i 6 2-v (1 )1/3 (13)Jt"dt 44" a i -fn (3

Mindlin et al. (1951) studied the oscillation of the tangential

force between +t* for small amplitudes of loading, i.e. t << fn.

They found that a stable hysteresis cycle is obtained after the first

quarter cycle and that the frictional energy loss per cycle due to

grain slippage is

€ . (2-v) t(
3

36 iaf(I

The annulus of slip was observed experimentally, and equation 10 was

experimentally verified. Johnson (1955) experimentally confirmed the

load-displacement relation (equation 10). Energy loss, however, was

found to obey equation (14) only for large amplitudes of tangential

force. At smaller amplitudes, the energy loss per cycle varied with the

square of the amplitude, rather than the cube as predicted by equation

(14). Goodman and Brown (1962) elucidated Johnson's findings. And

in the discussion following that paper, Johnson revealed that the

energy loss dependence on the square of the amplitude had also been

observed for oscillating normal force at small amplitudes.

17



Mindlin and Deresiewicz (1953) further extended the theory to

include the addition of a varying force of constant obliquity across a

contact surface under the initial normal load, n 0 , The tangential

compliance in loading in the stable cycle is

2-v L*+L -1/3

L + ( ) [ - (l+e) ]2(148L) (15)

dt

where L - t/fn0 , L* - t*/fn0 , 8 - f/B, and B > f. The

compliance for unloading, Jug is given by the same expression except

that the signs of 8 and L are reversed. For small loading, (small L*)

the frictional loss per cycle is

(2-v) t* 3  2 (16)
361.a0fn0

where a0 is the contact radius resulting from nO.

4. PREDICTED VELOCITIES FOR ORDERED PACKINGS

The dynamic frame moduli of ordered packings of identical smooth

elastic spheres may be calculated explicitly. The structural proper-

ties of ordered packings of spheres have been formulated by Graton and

Fraser (1935). Early models (Kara, 1935; lida, 1938, 1939; Gassmann,

1951b) developed dynamic stress-strain relations based on Hertz' contact

theory. These models however consistently predict velocities that are too

low when tested againstexperimental results. Furthermore, we know that

the tangential stiffness of a contact is of the same order of magni-

tude as the normal stiffness. Duffy and Mindlin (1958) and Duffy (1959)

have since demonstrated how to derive stress-strain relations

based on Hertz-Hindlin micromechanics. Directly followed

IdI



their approach, we are able to pose explicit expressions for the comnres-

sional wave modulus, Nd, and the shear wave modulus, Nd, for

simple cubic, hexagonal, close-packed, and face-centered cubic arrays.

Interest focuses on these packings because the hexagonal close-

packed (hcp) and face-centered cubic (fcc) arrays constitute the

densest packing of identical spheres with * - 0.2595, while in the simple

cubic (sc) array, * = 0.4764. Smith, Foote, and Busang (1927) have

suggested that a random packing may be modeled as a mixture of clusters

of hcp and sc microstates.

Duffy and Mindlin (1958) and Duffy (1959) found the fcc and hcp

arrays, respectively, to be statically undetermined. That is, the

equilibrium equations were not sufficient to determine the stress-strain

relations. For these arrays, the relative displacements among the spheres

in the lattice are required to simultaneously satisfy the compatibility

equations. The compatibility equations involve the contact compliances,

they are nonlinear owing to the nonlinearity between the normal contact

force and the normal approach in equations (8) and (9). And because of

the inelasticity between the tangential force and tangential displacement

in equations (12) and (13), they depend on the entire loading history.

Deresiewicz (1958) found the sc packing to be statically deter-

minate. But although the history of loading does not enter into the

calculation of the contact forces, the nonlinearity and inelasticity

remain in the compliances at each contact.

Two assumptions greatly simplify the equations. i) If the loading

history is isotropic and homothetic, then from symmetry considerations,

the initial contact forces are all equal and have no tengential com-

ponents. From the equilibrium equations and the definition of stress,

1)A



the initial contact forces are

no 0 2 R2O0  (17)

where a is the isotropic stress or hydrostatic pressure. Since the

loading history is the same, the initial compliances do not vary from

contact to contact. ii) If the applied arbitrary stress increments

are small compared to n. , then the total stress never significantly

departs from no. The contact radius becomes

3(l-v)r 0R 1/3
a W a (18)

The normal compliance is

1-V
n 2 a0  (19)

By letting L* - 0 in accordance with the small amplitude assumption,

we find that

it -J M JU M 2-v (20)

Given these assumptions exact solutions are obtained for the case

of an initial isotropic, compressive stress, cot followed by an

arbitrary, yet small, incremental stress. Clearly, these solutions

are appropriate for acoustic wave propagation in a granular material

under hydrostatic confining pressure.

The set of explicit, continuum, differential constitutive equations

takes the general form dT - C dE , where T is the stress tensor, E

is the strain tensor, and C is the compliance tensor. The equations

for the sc packing have the particular form of an isotropic solid. The

2U



independent moduli are two,

C 11 c 0
(21)

c 12 2(2-,) Cv '

3a2o 0  1/3
where co  The equations for the hcp array have a

2(1-v)
symmetry corresponding to a tetragonal crystal with six independent

moduli,

1152 - 1848v+ 725v 2

11 24(2-v)(12-llv) ,

•(120 - 109%P
c1 2  = 24(2-v)(12-11v) C0

c VC1 3  3(2-v) C0  '

(22)

c 4(3-2v) cc33 = 3(2- v) 0o

c c6-5 v coc4 4  = c5 5  4 (2- v)

c 576 - 948 v + 417v
2

66 24(2-v)(12-l1v) 0

The equations for the fcc array correspond to a cubic crystal. The

moduli are

4-3V

S 2c44  2-V CO

(23)

V
c 12 =2(2-v) CO

Results are compiled in Tables 1 and 2.
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The predictions are unambiguous, and several points are important.

Velocities are predicted to be independent of grain size. Velocities

depend on the pressure to the 1/6 power. As V and Va for a givenps

packing have the same pressure dependence, V p/V as a function of

pressure is a constant. Both Vp and V s  are.proportional to the

fourth root of the contact area. In fact in general, V and V5  areps

predicted to behave qualitatively the same.

The material has ultimately been modeled as an elastic solid.

However, should frictional inelasticity be important, amplitude de-

pendence would be observed in the moduli, velocities, and Q , where

Q is a dimensionless measure of the enrgy loss per cycle divided

by 27 times the maximum energy stored per cycle. Analysis of the

frictional dissipation mechanism is deferred to Murphy (1982b).

5. GRAIN SIZE EFFECTS

The apparently strong peak in Vs  observed for fine sand at

- 0.45 observed in the Hamilton and Smith data (fig. 3) finds no

support in the careful experiments of Hardin and Richart (1963) or

Edil and Luh (1978). By varying grain characteristics in their

measurements, Hardin and Richart (1963) found V to be independent5

of grain size, weakly dependent on grain shape, significantly depen-

dent on porosity and dependent on confining pressure to the 1/4 power.

Pilbeam and Vaisnys (1973) have made the problem interesting by

finding a strong grain size effect and power law pressure dependences

with exponents ranging from 1/3 to 1/6. The work of Edil and Luh

(1978) generally agrees with Hardin and Richart finding no grain size

effect and a weak grain shape effect; however, their empirical

25



relationship for V as a function of porosity and confining pressure

is more complicated.

In order to test the theoretical predictions, and to determine

once and for all whether or not grain size per se affects velocities,

we 1-ave measured V and V in disordered packings of vacuum dry,
p 5

soda-lime glass beads as a function of grain size. The measurements

were made under uniaxial pressures P a from 0.1 to 35 M~a. The

vacuum achieved in the pores was 5 im. Glass beads were chosen as

the test material because a change in bead size entails minimal inherent

changes in other potentially significant grain characteristics, such as

grain shape and grain roughness. The measurements are made in care-

fully compacted samples. The beads are first delicately spooned into

the cylindrical pressure vessel. They are then subjected to two

preliminary slow, uniaxial pressure cycles in order to obtain repro-

ducible, stabilized packings. In glass beads, the hysteresis cycles

stabilize after the initial cycle. An example of a third cycle

is given in figure 7. Recalling that the predictions were derived for

an isotropic compressive stress, we have been concerned with the uni-

axial nature of our applied stress. In figure 7, we compare our example

of a pressure cycle with data for similar samples from Domenico (1977).

Domenico's data represents an average at each given confining pressure

of the loading and unloading cycles. The agreement is satisfactory

for the qualitative objectives of our experimental tests. The quanti-

tative discrepancies shall be considered when appropriate in the dis-

cussion of the data.

Hereafter, all experimental pressure data given will have been

taken from unloading part of the third pressure cycle.

26
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We have tested for strain amplitude dependence in velocities by

varying the input voltage which is delivered to the lead zirconate

transducers (PZTs). The amplitude was increased at 100 volt intervals

from 100 to 1000 volts at Pa - 0.4, 1.0, and 5.0 MPa. No strain

amplitude effects were observed. Stoll (1979) has reported the absence

of strain amplitude effects in dry and saturated sands below strains

of 10- 6 . Stoll's measurements were made under very low confining

pressures. Similar behavior has been observed in sandstones (Winkler

et al., 1979; Murphy, 1982a).

Figure 8 gives V and V5  against diameter 2R divided byps

sample length, L, at 4 MPa. We observe that if sample length is greater

than 100 grain diameters, then the velocities are independent of grain

size. Clearly, when 2R/L - 1, the velocity measured is closer to the

speed in a homogeneous block of glass. As 2R/L approaches 0.01, the

grain packing approaches that of a uniform, disordered granular con-

tinuum. In the intermediate range, 0.01 < 2R/L < 1.0, we may suppose

that macroscopic heterogeneities produce high stressed columns of

grains in which contact areas are large and dynamic moduli are high.

The theoretical predictions for the glass bead samples in which

Ps " 2450 kg/m 3 , v - 0.21, and p - 29.655 GPa are given in Table 3.

In figure 9, we have plotted measured V and V5  vs. uniaxialp

pressure as a function of grain size, along with the theoretical curves.

The porosities in the two samples are virtually identical. As the

pressure increases from 0.1 to 35 M!a, the porosity in the 149-210 im

sample decreases from 0.392 to 0.372; while porosity in the 74-105 Um

samples decreases from 0.387 to 0.370. The two sets of data for the

74-105 pm and 149-174 Um samples represent the larget discrepancy,



TABLE 3

Predicted velocities for soda-lime glass beads, where p6

2.45 x 10 kg/rn 3, V 0.21, and p - 29.655 6Pa.

V pV sV p/V

sc 100p 1/ 6. / .0

1/6 1/6

hcp 1166 p 808 p1 1  1.443

fcc 1155.4 p 1/6  817 p1/6 1.414

29



4000 1

GLASS BEADS
3000 FREQUENCY -200 kHz

E2000 0

>00

" r
1000 5-0 0-0 0-0-0

0 0,I ,I ,I

3000- Paz 4 M P

P- P/Po(H 20)A= 0.40

2000 o
N Ai
> E

1000 -3D

0 ,

0.0001 0.001 0.01 0.1 1.0

GRAIN DIAMETER/SAMPLE LENGTH

Fig. 8. V and V vs. grain diameter divided by sample length.p s

Grain diameter divided by sample length is the inverse

of the number of grains along the primary wave path.

3u



2000ECY20k-

1500-

1000hc

1500

- ~ fcc ~ 8 99 S

13.a

>150C

1.25 -

p.5 SC pa

dry samples of different size glass beads. Al1so plotted

are the theoretical predictions frcm Table 3.

31



4%, that we have measured in the eight sieve fractions between 62.5

and 250 Um. The larger sieve fractions consistently tend to have higher

velocities than the smaller sieve fractions, particularly In shear,

but by no more than 4%.

Within experimental tolerance, the model correctly predicts that

velocities are indeed independent of grain size. At worst, we find

an extremely weak dependence.

However, the velocity dependence on pressure does not conform to

a uniform 1/6 power law. In fact, we observe distinct segments of

1/6behavior (figure 10). V is best fit by 920 p above 10 MFa, but
P

1/4
below that pressure it is best described by 750 p While V is

given by 525 p1/6 at high pressures, and by 450 p1/4 at low pressures.

The transition occurs at lower pressure, 5 MPa, in shear wave velocities.

In short, what we are observing is a steeper 1/4 power law dependence

at low pressures, rapidly flattening to a Hertz-Mindlin dependence at

intermediate pressures.

If the packing in our disordered samples could be modeled as a

mixture of clusters of hcp and sc microstates, as suggested by Smith

et al. (1927) the measured velocities would fall between the hcp and sc

predictions. Clearly, they do not.

Lastly, Vp/V s was predicted to be independent of pressure. In

figure 9, we find a significant dependence on pressure, particularly

below 5 MPa.

6. ADHESION AT GRAIN CONTACTS

The model which has been derived for ordered packings of spheres

in Hertz-Mindlin contact has achieved limited suc:ess. Improvement

may be attempted in two ways: i) better understanding of individual
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grain-to-grain contacts and ii) better understanding of disordered

packings of grains.

We have thus far treated the grain-to-grain contacts as a purely

mechanical interaction responding to a compressive load. A Hertz-

Mindlin contact cannot sustain an applied tensile traction. Observa-

tions of contacts between spheres and flat plates of low modulus

materials have shown that at low applied loads, the Hertz theory

(equation 6) predicts contact radii that are consistently too low.

Associated with every surface is a surface energy resulting from

the action of surface forces. As two grain surfaces are brought to-

gether, there exists an equilibrium separation, z0 , at which the

competing van der Waals forces of attraction and repulsion between

atoms and molecules in the two grains are balanced. At a distance

less than z0 the surfaces will repel each other. At distances

greater than z0 they will attract. The force per unit area varies

as a function of separation by

a -Az - 3 +Bz 6  (24)a

which graphically has the familiar appearance of figure 11.

%

Fig. 11
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Repulsion is taken to be positive such that we may speak of heights of

energy barriers. Attraction is to be negative, thus we may discuss

the depth of energy minima. It is clear that in this construction, a

tensile force or force of adhesion must be exerted in order to separate

the two grains. The two surfaces each possess a surface energy per unit

area, y, equal in total to the work done in separating the surfaces.

y is given by (Verwey and Overbeek, 1948)

2 f ~a dz A 2(25)

fz0 0adZ 0

where A is known as the Hamaker constant. The surface energy of

silica in a vacuum has been reported to be -0.280 J/m 2 (Brunauer

et al., 1956). The Hamaker constant of quartz is roughly 7 x 10- 20 1

(Israelachivili and Tabor, 1973). z0  is then Z 1 to 2 A , and the

maximum adhesive fraction is -10 GPa, which falls off 2 orders of

magnitude at a separation of 5 A . The forces of adhesion are large,

but their range of action is quite small.

Johnson et al. (1971) have derived an exact expression for the

modified Hertz contact area taking into account the surface energy.

It is

a = a 3 +( { (2wn+w2) } (26)

where w - 3yrR and a0 is the Hertz contact radius given by equation

(6). Several new predictions are immediate. Surface energy generates

a larger contact area at a given normal force, especially at small

loads, as shown in figure 12. The dependence on normal force is

flattened from n1/3 to n1 /3 + n1/2
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When y 0, equation (27) reduces to equation (6). At n 0, the contact

area remains finite and is given by

.3 8(1-v) R (a - 3 ;(27)
3!

and an applied tensile traction equal to

n - y1R (28)

is required to separate the spheres. Johnson et al. (1971) have

verified these relations experimentally.

Another important point is that the energy loss per cycle under

small amplitudes is no longer dominated by friction but by the surface

energy which will resist grain slip at the contact edges. During each

cycle as contact edges are deformed, hydrogen bonds between surface

hyroxyls and molecular water may be broken and energy absorbed (Spencer,

1981). Velocities and Q- would then be strain independent.

The surface energy of quartz and silica glass is controlled by

moisture. Indeed, the surface energy of silica immersed in water drops

to 0.139 J/m2 from 0.280 J/m (Van Voorhis et al., 1957). It is gen-

erally thought that the hydration of a fully hydroxylated silica

(silanol) surface strongly increases the molecular repulsion forces

(Aronson and Princen, 1978; Israelachivili and Adams, 1978; Pashley,

1980; Pashley and Israelachivili, 1981). Diagramatically, we see in

figure 13 that hydration strengthens the short range repulsion forces,

dramatically weakens the energy minima, and produces an energy barrier

in the electrical double layer (DVLO theory; eg. Sonnatg and Strenge,

1972). Kitchner, 1971) has further postulated that a layer of silica

gel forms at the silica surface.
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The reduction in surface energy substantially eliminates the

adhesive contribution the the contact compliance. In our uniaxial

experiments, we have consistently noted a significant volume expansion

in vacuum dry samples when wetted with water. In sands (Hardin and

Richart, 1963; Elliott and Wiley, 1975) and sandstones in general,

(Pandit and King, 1979; Clark et al., 1980: Spencer, 1981; Murphy,

1982a) a strong defect in the dry frame moduli is observed with a loss

of vacuum, or an increase in relative humidity, or bulk wetting. This

effect is described in figure 5. Although the effect is relatively weak

at 200 kHz, a 15% decline in the V of Ottawa sand at 0.1 MPa hass

been measured in the present experiments with the addition of 0.10

water saturation.

In short, adhesion, though crucial to the dry frame moduli is

negligible in the wetted frame moduli. Adhesion cannot help to explain

the behavior of Vs  in figure 3.

Murphy (1982a) proposed an additional surface mechanism to explain

the frame modulus defect. The surface tension of small amounts of

water between two quartz grains applies a force of adhesion on the

contact given by n 27R, where y is the surface tension of water.

McFarlane and Tabor (1951) have indeed observed such adhesion between a

glass sphere and a glass plate as a function of relative humidity.

The effect is negligible below a relative humidity of 0.80 and reaches

a plateau at 0.85 or 20 monolayers of H20. We have observed no such

dependence in dynamic moduli, only a monotomic, exponential decre-ce

with increasing relative humidity (Murphy, 1982a; Clark et al., 1980).

Although this mechanism is crucial in the construction of sand castles,

it appears to be irrelevant to the acoustic properties of granular

sediments.
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7. GRAIN ROUGHNESS

Grain roughness may or may not be significant in the glass bead

samples in which the individual spheres are quite smooth; but it is

undoubtedly an important consideration in quartz sand where the relief

on the grain surfaces is of the order of I jim on a 200 Wm grain. More-

over, the nature of the analysis for micro-roughness suggests a fruitful

approach to disordered packing.

Let us assume that a nominally flat surface is rough. It has

asperities with spherical summits all of radius, C , which deform

elasticity in accordance to equations 6-9. Following Greenwood and

Williamson (1966), as the rough surface approaches to a distance h

from a truly flat plane, the probability of making contact at any

given asperity of height, i is

prob (Z > h) f O(Z) dZ (29)

h

where 0 is the probability distribution of asperity heights. If one

further assumes that the asperities do not interact and defines s to

be the standard deviation of asperity eights or roughness, rj to be the

density of asperities, and A to be the nominal macroscopic contact

area we obtain

m - nA F0 (h/s)

A - IMACs F1 (h/s) (30)

n a 1 6u 1/2 3/2n(-v A E as (h/s)3(i-v) F3/2

where m is the number of contact sites, A is the actual contact area,
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and

Fk(h/s) - (u - . ) (u) du (31)

k f

*(u) is the height distribution scaled such that its standard devi-

ation is 1.

Two particular distributions are of interest. Measured height

distributions tend to be Gaussian (Greenwood and Williamson, 1966).

However an exponential distribution is a fair approximation to the

uppermost 25% of the asperities and gives a simple analytic solution.

This solution yields results very close to those obtained numerically

for the Gaussian distribution by Greenwocd and Williamson (1966).

Given an exponential distribution of heights, i.e. * (u) - eu
-h/s

then the functions F (h/s) are just k!e Equations(30) reduces
k

to

-h/sm 0 TIA e-

A i sr(Ts)A e (32)

41/2

n s-I (rcs) (s/E) 1 /2 A •h/s

1-V

Eliminating the separation (h/s), we find that both the number of

contact sites and the area of contact are exactly proportional to the

normal force. Thus, the average size of the contact, and the contact

pressure are independent of the load. Of course, a given individual

contact grows in area with load, but simultaneously new smaller con-

tacts are being forced. There exists a balance which leaves the

average unchanged.
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The calculations for a Gaussian distribution show a similar be-

havior except that the proportionalities, which were exact for the

exponential distribution, now vary slowly with load.

In the case of the approach of two rough spheres, the global

curvature of the bodies limits the apparent contact area. The asper-

ities can no longer be assumed to be independent, for the force on one

contact may change the height of its neighbors. Greenwood and Tripp

(1967) have numerically solved this problem for a Gaussian distribution

of asperity heights. Hertzian contact theory (equations 6-9) is found

to be the high load limit for rough spheres. At low loads, the pressure

distribution strongly contrasts with the Hertz predictions. The

nominal contact area is an order of magnitude larger, and the maximum

pressure is 1/3 smaller. Of course, the actual contact area is much

smaller than the Hertzian value. And the pressures on the microcon-

tacts are much higher than Hertzian pressures. They are in fact of

the same order as those for nominally flat surfaces, and again are

proportional to 1.J_ (s/') 1 /2 . The proportionality factor varies

slowly with the magnitude of the load.

Some asperities may suffer plastic deformation. The plasticity index,

which combines the material and topographic properties of a sur-

face has been shown to be an accurate criterion for the onset of

plasticity (Greenwood and Williamson, 1966). is

S( (s/C)1 /2  (33)
E(l-V)

where H is the hardness of the material. 5.15 x 1010 kg/m 2 is the

hardness reported by Potters Industries Inc. (1980) for the glass

beads. Sharp and rough grains with above 1 will almost certainly
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have some plastic deformation, while round and smooth grains with

Sbelow 0.6 will strain elasticity.

The general result however does not rest on the particular consti-

tutive model governing the contacts. The behavior at low loads is not

determined by the mechanics of the asperities but rather by the sta-

tistics of the surface roughness. If increasing the load creates new

contact sites, then A a n. At high loads where increasing the load

simply enhances the size of the existing contacts, the micromechanics
2/3

takes over, and in the elastic case, A a n .

Permit one further point for completeness. Surface roughness may

inhibit adhesion (Fuller and Tabor, 1974). Consider a dimensionless

adhesion parameter, ,

21(i ) s2/ 3Rl/2 (34)
YE

The demoninator is a measure of the adhesive force experienced by a

sphere of radius, C . The numerator is a measure of the elastic force

needed to push a sphere of radius C to a depth s into a solid of

modulus, 211(l+v). is the ratio of the compressive elastic forces

exerted by the higher asperities which are attempting to separate the

surfaces and the adhesive forces which are attempting to hold the

surfaces together. When the adhesion parameter is small, the adhesion

is high. As the surface roughens the adhesion parameter increases.

When the asperities are sufficiently high, the surfaces are effectively

pried apart and the adhesion falls to a small value.
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8. DISORDERED PACKINGS OF UNIFORM SPHERES

In crystallographic arrays, the porosity and coordination number

are fixed, microscopically uniform, and known. But in natural and

artificial sediments, the packing is disordered. Porosity and coordin-

ation are undetermined. They vary microscopically, and their continuum

values are averages or probability densities. Porosity can be measured.

Coordination number is more difficult to obtain. Most relevant to our

interest, porosity and coordination number, especially coordination

number, are dependent on pressure.

Without any exaggeration, it is the relation between coordination

number and effective pressure which controls the dynamic frame moduli

in marine sediments. In this section we continue our analysis of

compacted artifical materials, carefully building a solid understanding

of the physics. We shall show in Section 11 that the theoretical

framework proposed in this section fits a compiled set of in situ data

remarkably well.

Virtually no previous work has focused on the effects of disorder

on velocities. Gangi (1981) reflects the state-of-the-art.

Brandt (1956) derived a model for the random packing of elastic

spheres in Hertzian contact. Coordination number was assumed inde-

1/6
pendent of pressure and fixed at 8.84. V was found to vary with pp

We find that the change in coordination number with pressure suc-

cessfully explains our glass bead results. The process involved is

similar to that in the case of grain roughness. At low pressures, the

increase of contact area due to the creation of new contact sites

1/4
dominates the pressure dependence, yielding Va p . At high pressures,

coordination number becomes independent of pressure, and the Hertz-
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Mindlin p1/6 dependence takes over.

Smith et al. (1927) and Bernal and Mason (1960) have studied

the porosity *, coordination number ', and their relationship,

* - f(V), in random packings of uniform spheres. Recall that the

hcp and fcc packings are the densest possible for uniform spheres with

- 0.2596 and i - 12; while, the sc packing is the loosest possible

ordered packing with 0 - 0.4795 and IP - 6. Random packings have a

narrower range of porosities. Random close packing, rcp, yields

* - 0.36. Random loose packing, rlp, has * - 0.40 (Scott, 1960).

Bernal and Mason (1960) were able to measure the distribution of coordin-

ation numbers in random packings of uniform spheres. hore importantly,

they were able to distinguish between those grains which were actually

in contact and those which were near to contact. In rcp, the mean

actual contacts are 6.4 per grain. While the total coordination,

adding actual plus near, is 8.5. The mean actual contacts in rip are

5.5, and total coordination is 7.1 These results are plotted in figure

14 along with measurements from Smith et al. (1927).

The solid line curve in figure 14 corresponds to the mean total

coordination at a given porosity. The porosities measured at 0.1 MPa

in our glass bead experiments were roughly 0.40. Measured at 35 MPa,

the porosity approached 0.37. The pressure increase decreases porosity,

and in figure 13 we move up the solid line curve from 8.2 at 0.40 to

8.8 at 0.37. Yet this is the weak component of the effect. The actual

number of contacts at low pressures is far beneath the line, perhaps

below 5. The displacements associated with low uniaxial pressure

cause the near contacts to progressively come into actual contact.

Thus in figure 14, low uniaxial pressures (<10 MPa) drive the rlp
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actual contact number nearly vertically to the solid line. This is the

dominant mode of contact area increase at low pressures. By 15 MPa

the coordination varies with porosity solely along the solid line.

The argument may be readily formulated in terms of roughness.

Consider two layers of spheres, separated by a small distance where the

roughness elements assume the radius of the spheres. The centers of

the spheres in the "flat" layer are fixed at a depth R below the

surface. The centers of the spheres in the approaching plane are

distributed in depth between 0 and R according to 4(w). The governing

equations then become equations (30), if we substitute R for C.

In the case of an exponential distribution of sphere heights above

the nominal plane, we find that the displacement, a , for two layers of

distributed heights is

( 2s lnI (I-.V)n (35)
= T A(s/R)

where s is the standard deviation of heights or roughness, r i-€,

the density of spheres, and A is the nominal area, say the area of

a horizontal section in the sample. The normal compliance of two layers

of distributed heights is

j d 2s (36)
n dn n

The contact area, A , can be similarly determined. Eliminating the

separation, it is clear that A is proportional to n.

An other case of interest is a random or uniform distribution of

heights l/R above the nominal plane. Physically, such a distribution

corresponds to a contant rate of increase in contact sites per unit
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displacement. The displacement, , is given by

2/5
=[ _5(l-_v R 1 /2 ](37)

and the normal compliance is

2/5
J d - .68 [ _1/2 3 (38)

vi ~1/24/5
The contact area can be shown to be proportional to p

n
Defining p to be - velocities and contact area may be4r2

related to pressure. The results are given in Table 4 along with the

corresponding Hertz-Mindlin predictions

TABLE 4

Exponential Random Hertz-

Distribution Distribution Mindlin

p1/2 1/3.3 1/6

V a

A1 /2  A5/ 1 2  A1 /4

ApAmp 4/5 AP2/3
AMp Acfp4 p

The behavior is strongly determined by the probability distribution

chosen. A satisfactory description of a compacted sphere pack would

include a 1/4 dependence at low pressures which implicitly flattens to

Hertz-Mindlin behavior at high pressures. The exponential distribution

is obviously to disperse for a compacted sphere pack. Neither is the

random distribution a satisfactory model. It is however instructive.

Again, it implies a constant rate of increase in contact sites per unit

displacement. Following the trends in Table 4, some interesting points



may be drawn about the character of a satisfactory model. Obviously,

Vap 1 /4  falls between the random distribution and the Hertz-Mindlin

predictions. The corresponding proportionalities among the other

variables calculated from the trends in the table would be V=A1 /3 and

11/15
A-p . In terms of the statistical microprocess involved, we may

speculate that the rate of increase in contact sites must fall off

faster with load than does the displacement.

Recall from the previous section that Greenwood and Tripp (1967)

found that a Gaussian distribution of roughness heights on a sphere

behaved like an exponential at very low pressures, but at higher pressures

approached a Hertz-Mindlin limit. In fact, we find in Section II that

in self-loaded, uncompacted, in situ continental shelf sands, the velo-

cities are well described by our model based on the exponential distribu-

tion in the first 50 m of depth. Then, from 50 m to 100 m, the velocities

follow the predictions based on the random distribution. Presumably,

with continuing depth, the velocities would pass through a behavior

associated with the 1/4 power dependence before reaching the Hertz-

Mindlin state at some greater depth.

The Gaussian distribution actually corresponds in granular sedi-

ments to the radial probability density of nearest neighbors. A

physical interpretation of the compaction process is given with the aid

of figure 15. The probability of finding a grain center at a radial

distance, 2R-A < r < 2R+A , is represented by a Gaussian distribution.

The actual number of contacts per grain is given at the intersection

of the cumulative distribution with the vertical line 2R. At very low

pressures, the grains are disperse. The mean is outside the distance,

2R (figure 15a). Fewer neighboring grains are in contact now than are



likely to come into contact in the future (with the application of

pressure). That is, the liklihood of an increase in the number of

contacts resulting from an increment in pressure is very high. The

shape of the segment of the Gaussian distribution which intersects 2R

is well approximated by an exponential distribution. With the appli-

cation of small loading the packing will tighten. The distribution will

narrow and will displace towards the origin. At some small applied

pressure, the mean will lie on 2R (figure 15b). At this point, the

number of grains which are in contact is equivalent to those which are

likely to come into contact in the future. Here, the uniform or

random distribution is a good approximation. With increased pressure,

the mean is now driven inside 2R (figure 15c). That is, more grains

are currently in contact than are likely to come into contact in the

future. The distribution now intersects 2R on the down side of the

1/4distribution. Here, V = pl/ And at some higher pressure still,

the distribution is almost entirely within 2R (figure 15d). It is now

highly unlikely that a grain will gain any new contacts with additional

increments of pressure. The sediment is now a Hertz-Mindlin material.

We can summarize this model by saying that the frame moduli in

a granular sediment qualitatively evolve with the state of compaction.

This model would suggest that the evolution we observe in the laboratory

samples is truncated due to pre-compaction.

The model also implies specific predictions about the velocity

depth gradients in uncompacted, self-loaded, granular sediments. These

predictions differ strongly with standing empirical models. In par-

ticular, the standing models predict a fixed pressure dependence with

depth. The competing predictions are tested against in situ data in

Section II.
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9. EFFECTS OF GRAIN ANGULARITY

We find that grain angularity produces three distinct effects on

velocities: two through the micromechanics of the grain contacts, and

the other on the packing. Each effect is separable.

First, recall that a principle assumption in the Hertz-Mindlin

contact theory is that the radius of the contact is small compared to

the radius of curvature of the grains. When a sharply angular grain

comes into contact with another surface (figure 16), this assumption

fails. (A similar situation prevails in the case of conformable

bodies in contact, which is applicable to sandstones with large

secondary quartz overgrowths.) The surfaces in the vicinity of the

contact can no longer be modeled as quadric surfaces, and a higher order

theory is required. The analysis has been developed for a number of

special cases, and approximate solutions have been found by Cattaneo

(1947), Deresiewicz (1961), Steurmann (1941, 1943), Lunberg (1939),

and Goodman and Keer (1965). Galin (1961) surveys an extensive Russian

literature on the subject. The general, relevant conclusion that may

be drawn from this work is that the higher order load-displacement

relations are stiffer. That is, elastic contact compliances between

angular grains are predicted to be stiffer than those between round

grains.

Perhaps, another way to visualize this effect is more readily

understood. In figure 17, we now focus on a cross-section of the

contact gap between grains. In the case of spherical grains, the

gap may be thought of as a flat Mavko and Nur (1979) type crack. Near

the contact circumference, the contact gap is very compliant. In

contrast when two angular grains meet in contact, the geometry of the
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(a) (b)

Fig. 16. Sketch contrasting the contact between two round

grains (a) with that between two angular grains (b).
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Fig. 17. Sketch contrasting the near-contact gap between two

round grains in contact (a) with that between two

angular grains in contact (b).
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pore is more closely approximated by a Walsh (1965) type spherical or

elliptical crack. This configuration is relatively stiff at the contact

perimeter.

We have measured V and V in 149-174 i.m, crushed and sievedP s

glass beads as a function of uniaxial prebsure. The sample was com-

pacted to a porosity of -0.40 at 0.1 MPa. The results are then com-

pared in figure 18 to those for spherical glass beads. The velocities

in the angular grains are consistently 15% higher. The V p/Vs in

the crushed glass is particularly high at 0.1 HPa.

The second effect of angularity on micromechanics is also evident

in figure 18. Above 20 MPa, velocities in the crushed grains are nearly

independent of pressure. The grains are so sharp; the radius of curva-

ture of the grains, c, at the grain contact is so small that the

plasticity criterion in equation (33) has been exceeded. The micro-

mechanics at the contact is plastic because ; becomes greater than 1

above 15 MPa. At low pressures, V5 is proportional to p /6, while Vs p

1/5
goes as p . Apparently, the compaction was sufficient to close most

of the near contacts. And at low pressures, the sample seems to behave

elastically.

We have also measured V and V5  in three, 106-125 wm, quartzps

sands of differing angularities. The grains in Ottawa sand are round;

those in Simplot sand are sub-angular; and Oceanside sand is angular.

The results are plotted in figure 19. The porosities vary with pressure

from 0.1 to 35 MPa. Those variations in the Ottawa, Simplot, and

Oceanside samples are 0.408 to 0.396, 0.412 to 0.398 and 0.415 to

0.397, respectively. We observe virtually no effect of angularity
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data for spherical glass beads from figure 9.

56



1800

-1400. .

E

1000- o OTTAWA SAND

0 0 SIMPLOT SAND

0OCEANSIDE SAND

600 1

000

800 106-125 Mm QUARTZ
'0 SAND

E FREQUENCY -200 k~z

600 P4,--5.m VACUUM

400

200

>r 1.75 0

> 1.0

UNIAIALPRESSURE (MPG)

Fig. 19. V , V vs and V p/V Svs. uniaxial pressure three

vacuum dry sands of differing angularities.

37



except a relatively pronounced, -10-15% increase in V at very low

pressures.

In figure 20, we have replotted the V data along with a best
p

fit power law. The expression, 920 pl/6, is the same as the high

pressure fit for the glass beads. The fact that it fits the entire

pressure range so well indicates that again compaction had closed most

of the near contacts. A better fit is obtained by the combination of

1/5 1/7
800 p and 1000 p/, suggesting that some plastic deformation is

occurring at high pressures. The V dependence on pressure is very
S

flat, again indicating plasticity.

The third effect of angularity is on the packing, and it is perhaps

the most important in natural sediments. Consider an rlp of round

grains and another of angular grains as sketched in figure 21. The

rlp of round grains may assume a porosity between 0.40 and 0.42; while,

the rlp of the angular grains achieves porosities between 0.45 and

0.58 (Brown and Richards, 1966). This result is plotted on a line

graph in figure 22. The implications for natural sediments shall be

discussed in the next section.

We would also like to suggest that a regular honeycomb of uniform

and equant six-point grains would be a good candidate for an ordered

packing of angular grains and exact analysis.

10. NATURAL GRAIN SIZE DISTRIBUTIONS AND POROSITY

Up to this point, we have considered packings of grains which

have had uniform radii. In this section, we relax this constraint and

investigate how natural grain size characteristics affect the frame

moduli.

Grain size distributions in natural graunular sedimentar materials
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ROUND ANGLLAR

Fig. 21. Sketch contrasting the random loose packing of round

grains with that of angular grains. The packing of

angular grains has a higher porosity.
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are well described as sums of discrete log-normal components (Vischer,

1969). The first moment of the total distribution is the mean, x

In phi (negative logarithm to the base 2) units, it is given by

n
x '(39)

i- J i i

where f is the frequency in percent for each phi size fraction and±

xi is the midpoint of each phi size fraction. The second moment or

standard deviation, s , is a measure of the sorting.

n 1/2
s - fi(x -x .(40)

If the grains are all spherical and surface effects are negligible,

porosity declines with a decrease in grain sorting. This is a well-known

fact based on the experimental measurements of Westman and Hugill

(1930), Furnas (1931), Graton and Fraser (1935), Sohn and Moreland (1968),

and Dexter and Tanner (1971). Norman et al. (1971) reached the same

conclusion by computer simulation of circle coverings and sphere packs.

The mechanism is obvious. The small sphere sizes are able to fill the

intersitial pores between the larger grains. If such a model were

relevant, the velocities would increase with decreasing sorting because

of the increase in the number of contacts per grain.

Grains in natural sediments are not spherical. Indeed, the

smaller the grains are, the more angular they become. As grain size

diminishes, clevage, mineralogic habit, and crystallographic properties

grow in relative importance. Therefore, implicit in any grain size

variation in natural sediments is a change in grain shape.

We have gathered data for porosity in uncompacted sands as a
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function of mean grain size and standard deviation from two sources:

Pryor (1972) and Beard and Weyl (1973). A map of contours of constant

porosity is given in figure 24. Of course, if the grains were all

spherical, the contours would be horizontal lines of constant sorting.

They are not. Mean grain size controls the porosity in uncompacted

sediments with a significant variation due to the sorting (figure 4).

Symbolically, we may write that

* xls (41)

where . denotes an unspecified function and is read "is determined by".

We have also gathered data on coordination vs. porosity in gran-

ular materials. The compilation is plotted in figure 24. It is clear

that broadly speaking, coordination number varies logarithmically

with 1 - . Recall that the frame moduli are determined by the grain

contact area, and that the contact area is most sensitive to a change

in the number of actual contacts per grain, p . Thus, we may write

that in uncompacted sediments at very shallow effective pressures,

V I A1/2 , V 4 e1-  (42)

The proportionality in relation (42) assumes that at very low effective

pressures, the limit is well described by our model with an exponential

radial distribution function. Relation 43 qualitatively explains the

decrease in V with porosity in figure 2. The increase in porosityp

lowers the coordination number. The decline in coordination number

reduces the grain contact area causing the frame moduli to soften.

Consequently, V drops. Relation 42 indicates that a reduction inp

mean grain size was initially responsible for the entire process.
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The problem of shear wave velocities in figure 3 may now be

resolved. We had sought in compacted sands a micromechanical effect

which would significantly distinguish the behavior of the shear frame

modulus from that of the bulk frame modulus. The data in figure 2

are considered to be reliable, and the Hamilton (1971, 1974b) and

Smith (1974) shear velocity data are problematic. Our experiments

have revealed only a small effect due to anularity, -10-15% on Vs

In uncompacted sands, such an effect would be swamped by the effect

represented by relation (42). Therefore, without equivocation, we

remove the problematic "data" from figure 3, leaving figure 25.

11. VELOCITIES VERSUS DEPTH

Hardin and Richart (1963), Gardner et al. (1964), and Domenico

(1977) have measured Vs in compacted sands varying with the 1/4 power

of confining pressure. Seed and Idriss (1970), Hardin and Drnevich

(1972a), Ohsaki and Iwasaki (1973), and Iwasaki and Tatsuoka (1973),

Sherif and Ishibabi (1976), and Yanagiswa (1978) propose empirical

equations for in situ sands of the general form

pVs  U c.fcn(W).pm  (43)

where m is constant and close to 1/4. Hamilton (1980) settles on

0.28a simple power law for water saturated fine sand, V. a 128h

where h is the depth. He also suggests another similar relation-

ship, V " 104.33h , as a better fit to the data of Ohta and

Goto (1978).

For compressional wave velocity, Hamilton (1978, 1980) proposed

V a 1805h 0 015

P
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We have compiled in situ measurements of Vs versus depth in

water saturated sands from Barkan (1962), Kudo and Shims (1970), Stokoe

and Woods (1972), Stokoe and Richart (1973), Cunny and Fry (1973),

Hamilton (1976), Anderson et al. (1978), and Arango et al. (1978).

The data are presented in figures 26 and 27.

In figure 26, Hamilton's predictions are plotted against the data.

The predictions from our compaction model based on the Gaussian radial

distribution function are plotted against the data in figure 27. The

three curves presented are for the limiting cases of exponential and

random distributions and the "1/4 power" behavior. The wetted shear

3/5 1/2frame moduli in the respective cases vary as p, p , and p We

substitute the proportionalities for i in the Biot-Gassman equations

(equation 3). Time constraints have as yet precluded quantitative

development of the model, and so the coefficients were determined by

best fit.
1/2

No one curve describes the data accurately. The curve, 75 p

describes the very shallow, lower velocity data - presumably the most

1/3.3disperse sands - very well. The curve, 160 p , quite accurately

describes the upper bound for the higher velocity, very shallow data,

1/4
as well as most of the data between 50 and 80 m. The curve, 200 p

satisfactorily describes the data above 80 m. In other words, each

curve is successful depending on the state of compaction. Perhaps

shear velocity depth profiles rather than just shear velocity may be

a useful tool for determining the extent of compact in a granular

sediment.

This result strongly suggests that a rigorous development of

a compaction model based on a Gaussian distribution function may
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accurately describe shear velocities in granular sediments.

We expect similar success with V . The wetted bulk frame modulusp

may be similarly determined. Substituting both the bulk and shear

proportionalities into the Biot-Gassman equations (equation 2), we

can predict the compressional wave dependence on pressure. Unfortunately,

we have been unable to gather V data for water saturated sands at
p

such shallow depths.

12. CONCLUSIONS

1) Frame moduli in granular sediments are determined by the grain

contact area.

2) In the limit of high pressure or strong compaction where the

coordination number is independent of pressure, glass beads and quartz

sands are well described as a disordered packing of elastic grains in

Hertz-Mindlin contact. Velocities vary with a confining pressure to

the 1/6 power and contact area to the 2/3 power.

3) Grain contact area in uncompacted materials is dominated by the

number of actual contacts per grain. A compaction model is proposed

in which the radial distribution of nearest neighbors is Gaussian. The

model predicts a strong dependence on the statistics of the packing,

and a qualitative evolution of the frame moduli which fits in situ data

remarkably well. The high pressure or strong compaction limit is a

Hertz-Mindlin material.

4) In vacuum dry materials, adhesion between grain surfaces contracts

contacts and significantly increases the area of each contact. Wetting

the grains with water eliminates the adhesion. Moduli drop and the

material expands measurably. Strain amplitude independence effectively

refutes the significance of frictional grain sliding.
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5) In uncompacted, disperse, self-loading sediments, velocities

vary with the contact area to the 1/2 power. Contact area is dominated

by the actual number of contacts which in turn is logarithmically

related to 1 minus the porosity. Thus, compressional and shear wave

velocities decrease with increasing porosity.

6) Grain size per se has no effect on frame moduli. However, in

natural sediments increased grain angularity accompanies a decrease in

mean grain size. Grain angularity in uncompacted materials increases

the porosity. Therefore, in granular sediments, decreasing grain size

generally lowers the frame moduli.

7) Contrarily, grain angularity in compacted materials increase

the frame moduli. Grain contacts may be plastic at high pressure.
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I/icromechanics of Acoustic Dissipation In

Fully and Partially Water Saturated,

Granular Sedimentary Hiaterlals
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1. INTRODUCTION

The response to small stress waves is the principle measure used

in geophysics to study material bodies in the earth's crust. The

class of granular sedimentary materials, which includes sands and

sandstones, holds considerable interest in geology and engineering

(fig. 1). Several particular problems in the acoustic properties of

Parts to be submitted to the Journal of Geophysical Research and
Journal of the Acoustical Society of America in July or August,
1982.
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these materials have been solved recently (Winkler et al., 1979;

Spencer, 1981; Murphy, 1982a,b; Murphy and Nur, 1982a). This paper

attempts to explain how the granular microstructure and pore water

saturation control wave attenuation and velocity dispersion. We are

6primarily interested in frequency range from 10 to 10 Hz.

Our experiments (Murphy, 1982a; Murphy and Nur, 1982a) have

shown that in the acoustic frequency range (fig. 2), compressional and

shear wave velocities and specific attenuation are strongly dependent

on water saturation and frequency. Maurice Biot (1956) has proposed

a theory for acoustic wave propagation which has been experimentally

corroborated in eirn-le porous media such as sintered glass beads

(Plona, 1980; Plona and Johnson, 1980). Yet Biot's theory is in-

consistent with our observations on sands and sandstones in the

acoustic and low ultrasonic frequency ranges. Biot's theory fails

because it neglects the granuZa.r nature of the sedimentary materials.

I wish to propose a model which relates the micromechanics at

the grain contacts to linear viscoelastic frame moduli. The frame

moduli describe the continuum stiffness and relaxation of the granular

frame, and are strongly dependent on frequency and water saturation.

When we embed the micromechanical model in general equations

for wave propagation in porous media (Biot, 1962; Burridge and

Keller, 1981),specific predictions are derived. The predictions test

very well against our recent experimental results. Moreover, the

theory provides a coherent explanation of the seemingly disparate

work of Gregory (1976), Winkler et al. (1979), Pandit and King

(1979), Stoll (1979), Plona (1980), Clark et al. (1980), Spencer

(1981), Winkler and Nut (1982), and Winkler and Plona (1982).
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The model is by no means fully developed. However, I think

that we have laid much of the foundation and correctly identified

the specific microprocesses involved.

2. REVIEW OF PREVIOUSLY PROPOSED MECHANISMS IN LIGHT OF

RECENT EXPERIMENTAL OBSERVATIONS

Sharp relaxations centered roughly between 1 and 10 kHz (fig. 3)

are observed in sandstones (Massillon, Navajo, Schuler-Cotton Valley,

and Spirit River), granites (Sierra White and Oklahoma), and Vycor

-1
porous glass. Q is found to depend strongly on water saturation.

Moduli are relaxed below 100 Hz and unrelaxed above 100 kHz (fig. 3).

None of the following mechanisms can coherently explain these obser-

vations.

Scattering

When the wavelength approaches the size of the grains or pores,

scattering will occur (Devaney et al., 1982). The center frequency,

f of scattering by the pores is given by

f .2( M )1/2
Dc

where R is the radius of the grains, 0c is the radius of the grains,

Pc is the composite density, and M is the wave modulus. For our

Massillon, Fort Union, Cotton Valley, and Spirit River samples, f ,

is above 5 MHz (fig. 3). A small negative dispersion, indicative of

scattering, has been measured in brine saturated Massillon and Boise

sandstones at frequencies above 500 kHz (Winkler and Plona, 1982).

These particular Massillon and Boise samples had grain diameters of

-300 and 200um, respectively. Scattering is not important in sand-

stones below 100 ktz.
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Frictional Grain Sliding

Frictional grain sliding is restricted to situations in which

strains are greater than 10-6; they are not important in far-field

seismic exploration, echo sounding, or borehole sonic logs (Winkler

et al., 1979; Mavko, 1979; Murphy, 1982).

Thermoelasticity

Thermal relaxation has been proposed as an attenuation mechanism

by Kjartansson and Nur (1982). The center frequency, fT , of

such a relaxation is given by

f h , (2)
T D

where h is the half width of the pore and D is the thermal dif-

fusivity of the composite. fT is roughly 10 kHz for Massillon

sandstone. This is indeed very close to the observed 3-5 kHz center

frequency (Murphy, 1982a). However, thermairelaxation is diffusion

controlled and thus predicted to be quite broad (see fig. 5.4 in

Kjartansson, 1979). The observed relaxations in Massillon sandstone

(Murphy, 1982a) and Navajo sandstone (Spencer, 1981) are very narrow,

nearly single Debye or Zener peaks. The predicted dependence on

water saturation is also inconsistent with our observations. Further-

more, Q1- at 1 kHz has been observed to decrease with increasing

temperature (Jones, personal communication). Th's result directly

contradicts Kjartansson's model. Thermal relaxation is irrelevant

in sands and sandstones at low temperatures and pressures.
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Ionic Relaxation Absorption

An important mechanism for low frequency sound absorption in

the oceans (Yeager et al., 1973; Fischer and Simmons, 1975; Sions,

1975; Schulkin and March, 1978) is the two step reaction

B(OH)3 + (OH)-lb B(OH) OH) B(OH) . (3)

Boric acid reacts with hydroxyl ions to form borate ions. This

reaction is of interest because we have measured a strong dependence

of Q on water saturation and frequency in Vycor porous glass

(Murphy, 1982a). Vycor consists of 4% boric acid which is concen-

trated near the pore surface. The center frequency of the ionic

relaxation is roughly between 1 to 10 kHz. However, the process is

diffusion controlled, and the predicted magnitude of the losses is

too small.

Dislocations

Mason (1969, 1971a,b, 1978) has proposed that dislocations

move in the grain surfaces as a response to acoustic loading.

Dislocations are not activated in quartz at low temperatures and

pressures (Griggs, 1969).

Vibrational Relaxation in the Water-Air Mixture

Zuckerwar and Griffin (1981) have measured the absorption of

sound in N2 as a function of relative humidity. The losses are too

small to account for those in granular sedimentary materials.

Biot's Solid-Fluid Coupling

Biot's solid-fluid coupling mechanism, which will be discussed

in detail in section 4 and 6, implies a sharp peak in Q-1 centered

at a frequency, fB , given by
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f f (4)Pf h 2

where n is the viscosity of the fluid and pf is the density of

the fluid. For Massillon and Navajo sandstones, fB' is above 100

kHz (fig. 3). The predicted losses in the 1 to 10 kHz range are

very small compared to observed losses. fB is very sensitive to

the pore width parameter, h. But, as h goes from ~10 Um in

Massillon sandstone to less than 1 m in Fort Union sandstone or Sierra

White granite, the observed peaks shift hardly, if at all. Nor does

this model account for the effects of partial water saturation.

Biotts mechanism may be important in the ultrasonic frequency

range in certain materials (Plona, 1980; Winkler and Plona, 1982).

"Squirt" (H[avko and Nur, 1979)

Imagine an ordinary laboratory squirt bottle containing some

water. Upon squeezing the outside of the bottle, the water dis-

charges as a high Reynold's number jet into an infinite reservoir.

This is a process which dies not occur during acoustic propagation

in sands and sandstones. As we shall later show, Reynolds' numbers

are significantly less than 1 in the acoustic frequency range. More-

over, Mavko and Nur (1979) mistakenly formulate the center of the

squirt relaxation to be the transition from incompressible to com-

pressible flow in the pore fluid. This choice of fre ncies is

in fact an infinite frequency, f, . Above f no flow can

occur because the period is too short. The pore fluid

behaves as an elastic solid. f, is given by

1 Kf 1/2f. > i; -]- (5)
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where b is the length of the fluid drop in the contact gap and Kf

is the bulk modulus of the fluid. f. approaches 1 GHz in sands

and sandstones (fig. 3).

Surface Mechanisms

It has been established beyond doubt that small amounts of water

interact with the dry surface of quartz grains, thus reducing the

frame moduli and increasing attenuation (Clark et al., 1980; Spencer,

1981; Murphy, 1982a,b; Murphy and Nur, 1982a). However, the physics

of the process is still an open question. For example, Spencer (1981)

suggests that a surface mechanism controls the sharply peaked

relaxation he observes at high water saturations. However,

Pandit and King (1979) have shown that remains indeper.dent of

frequency as relative humidity increases from 0 to 82%. At a relative

humidity of 98%, the data indicates the onset of frequency dependence.

82% relative humidity is equivalent to 5 monolayers of water (Tittmann

et al., 1980). The onset of frequency dependence is thus evidently

with bulk liquid water and not surface films.

3. THE CONCEPT OF THE MODEL

Sands and sandstones are porous, granular materials. Micro-

structures vary greatly within the scope of these materials (fig. 4).

The resulting differences among their acoustic properties are dis-

cussed in Murphy and Nur (1982a). All sands and sandstones however,

are distinguished by a common character. They consist of elastic

quartz grains in contact, immersed in a viscous pore fluid (fig. 5).

The pore fluid in which we are most interested is a binary mixture

of water and air. The grains are of course described by bulk and

shear moduli, and pore fluid by viscosities and compressibilities.
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(a) (b) (c)

Fig. 4. Sketch of the three extreme types 
of granular

sedimentary materials: (a) unconsolidated

sands, (b) high porosity sandstones, and (c)

low porosity sandstones.
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Fig. 5. Photomicrogr. ?h of a Massillon sandstone under

partially polarized transmitted light.

Porosity is shown by the light blue epoxy.

Grain size is roughly 150 pm.
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The acoustic behavior however is dominated by the interactions at

the contacts. The grain to grain interactions are discussed in

Murphy (1982b). The grain/fluid/grain interactions are the cause of

attenuation and dispersion. As the grain contacts close and open

under oscillatory loading, the water must be squeezed out and sucked

back in the thin gaps between grains. These "squeeze films" are

coupled to the fluid in the local pore neighborhood. The water

also reacts electrochemically with the surface of quartz grains.

When exposed to water, the quartz surfaces hydroxylate, and water

adsorbs on the hydroxylated or silanol surfaces. An electrical

double layer is formed. The double layer may be -10 nm thick. A

layer of silica gel may also be formed.

4. SURFACE ELECTROCHEMISTRY

The three principle effects of mosture or vapor pressure on dry

sands and sandstones are the modulus defect, the volume expansion of

the granular frame, and the increased constant Q energy losses. Each

is a consequence of the electrochemical interactions at the quartz-

water interface.

The Structure of the Electrical Double Layer

Consider a freshly broken, clean quartz surface. Such a surface

has "dangling bonds". That is to say that silica and oxygen ions

lack neighbors on at least one side. These sites are unstable. The

surface ions may polarize and relax into a modified structure of

lower potential energy. This surface, called the disturbed layer,

consists mainly of Si-O-Si bridging or siloxane groups (Parks, 1982).

This configuration, for instance, might be the state of a freshly
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cleaved quartz surface under a vacuum of 10-10 torr at high temperature.

Both dangling bond sites and siloxane groups are chemically re-

active. The surface possesses a strong negative charge easily suf-

ficient to drive the ionization of water. Quartz (Gallei and Parks,

1972), amorphous silicas, and glasses hydroxylate upon exposure to

water vapor. The hydroxylated surface is dominated by SiOh or silanol

groups of various types. The surface retains a reduced yet sub-

stantial negative charge. The pore surface of all sands and sandstones

are expected to be hydroxylated, probably even those in Tittmann's

(1980) experiments (which are subjected to a 10-10 torr vacuum and

moderate temperatures).

Given a finite vapor pressure or relative humidity, a layer of

water adsorbs chemically on the hydroxylated quartz surface. This

layer, called the inner Helmholtz layer (fig. 6a) is hydrogen bonded

to silanol sites with the bonding strength of 8 to 12 ki/mole (Parks,

1982). The layer is roughly 1 nm thick. It is structured and possesses

low entropy, mobility, and polarizability relative to bulk water.

Increasing vapor pressure deposits a second layer of water,

known as the outer Helmholtz layer (fig. 6a). It consists of a sur-

plus of positively charged ions (counterions) and a small deficit of

negatively charged ions. The counterions are held by electrostatic

attraction. This layer is also about I nm in thickness. It is less

structured than the inner Helmholtz layer. But it is more struc-

tured than the water residing outboard of the Stern double layer

(fig. 6a).

Beyond the Stern double layer, we move into the diffuse double

layer (fig. 6a). Here, the electrostatic attraction falls off expon-
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Fig. 6. Sketches of the electrical double layer:

(a) The structure of the double layer, and

(b) the interaction between the double layers

ontoadjacent grains.
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entially, and the properties in this layer asymptotically approach

those of bulk water. The combined thickness of Stern and diffuse

double layer is roughly 5 to 10 nm.

Surface Energy and Contact Compliance

Surface free energy, y , is the work required to produce new

surface area. Since deformation by acoustic waves involves changes in

surface area, y is an important factor in contact compliance.

The density and strength of the bonds broken in the fracture

principally determine the y of the freshly cleaved quartz surface

-2
(Adamson, 1976). Parks (1982) estimates a y of as much as 2000 mJm.

Chemical and electrical interaction of any sort whatsoever will

reduce y relative to the clean surface. Hydroxylation, adsorption,

and double layer formation progressively and dramatically reduce y.

This reduction is shown schematically in figure 7.

The reduction in y causes a proportional decline in the contact

and frame moduli (c.f. Amberg and McIntosh, 1952; Spencer, 1981).

There are three possible molecular mechanisms. First, the van der

Waals attraction between grain surfaces is lowered. The contact

area decreases, and the granular frame expands as explained in

Murphy (1982b). Second, any hydrogen bonds bridging surface hydroxyls

between grains are broken. And third, the intrinsic grain moduli,

K and ps ,may be lowered.

Clark et al. (1980), Tittmann et al. (1980), and Spencer (1981)

have measured the modulus defect as a function of the composition of

the fluid. The results may be understood readily with the aid of

the following equations.

The reduction of surface energy by specific or chemical adsorption
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is described by the Gibbs adsorption equation (Hiemez, 1977)

dy = - r 'i di (7)
i

where ri is the Gibbs excess adsorption density of species i and

is the chemical potential of species i. The reduction of surface energy

by combined chemical and electrical effects is given by

dy -z r£ d + r ri d ) (8)
i i

where Pi is the electrochemical potential of species i which is

related to i as follows

1 f. i .+ z e (9)

where is the potential of the charged species in i, zi is the

valence number of the ith charged species, and e is unit positive

charge.

Six fluids were tested. Listed in decreasing order of effect

observed on the moduli, they are water, ethanol, methane, n-decane,

benzene, and hexane. This is also the order of decreasing change in

chemical and electrochemical potential.

This model predicts that the addition of an electrolyte to the

water would further reduce the frame moduli.

Constant Q Energy Losses

As the contacts oscillate under acoustic loading, the surface near

the contacts is deformed. Hydrogen bonds are broken as the film is

squeezed away and drawn back to bonding sites. New sites may arise

and disappear or the double layers may overlap and separate (fig. 6b).

The relaxations are diffusion-controlled. The :elaxation times are
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broadly distributed because of the variation in mobility across the

double layer. The attenuation due to electrochemical surface mechanism

is thus constant Q (fig. 8), at least in the frequency range be-

tween 10 and 106 Hz. The actual relaxation times ought to be predicted

from statistical mechanics.

Explanation for the increased loss with increasing moisture or

vapor pressure is straightforward. Consider that

Q-1 S Z n b  (10)

where S is the total surface area deformed, j is the number of

layers in the double layer at the given vapor pressure, n is the

number of fluid molecules per layer per unit surface area, and

is the energy lost in breaking a hydrogen bond. tb is a constant.

n increases (by definition) with increased deposition on the surface.

S also increases with vapor pressure because the contacts become

more compliant.

Several investigators (Born, 1941; Spencer, 1981; Murphy, 1982a)

have found that Q- is frequency independent in dry sandstones. Pandit

and King (1979) have shown that Q-I remains independent of frequency up

to relative humidities between 80 and 90%. At this vapor pressure,

bulk liquid water begins to condense in the smaller contact gaps or

capillaries. Frequency dependent Q is associated with the presence of

bulk liquid water.

5. MICROHYDRODYNAMICS

When bulk liquid water is present in the contact gaps (fig. 9),

oscillatory displacement of the grain surfaces will drive local fluid

flow. This process determines the large losses that are dependent on
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both water saturation and frequency. Of course, the electrochemical

surface mechanism continues to operate. It provides a frequency

independent background loss. But in the range from 100 Hz to 100 kHz,

local fluid flow dominates. There are three parts to the fluid flow

problem: i) boundary layer development, ii) squeeze film elasto-

hydrodynamics, and iii) propagation and flow in a compact pore

neighborhood.

Boundary Layer Development

In a porous medium under acoustic loading, the pore fluid moves

relative to the solid frame (Biot, 1956). Consider a half cycle of

an oscillatory displacement of a cylindrical pore in the plane of its

axis (fig. 10a). The fluid in contact with the wall adheres to it.

A velocity profile develops as viscous tangential stresses diffuse

vorticity across the pore width with a diffusivity

- -rL (12)

where v is the kinematic viscosity. Energy is dissipated by the

viscous tangential stresses. The depth to which the boundary layer

has penetrated before reversal is the skin depth

1/2
6 - ( ) . (12)

Dissipation is confined to the boundary layer.

When 6 reaches h, the flow profile becomes parabolic (i.e. a

Poiseuille flow). It is said to be fully developed. At 1 MHz,

the flow would be fully developed in pores 3 i in width. At 10 kHz,

flow in 300 jim pores would be fully developed.

Viscous dissipation is defined in general as
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(b)

Fig. 10. Boundary layer development: (a) wall is beginning

to move, and the fluid is still; and (b) the wall

is fixed, and the fluid is beginning to flow.

106



V- the rate of energy loss per unit (13a)
volume per unit time

T . C (13b)

- (Vv) + (7v) T  : (7v) + (Vv) T  (13c)2

where V is the del operator and v is the fluid velocity. In this

specific solid-fluid coupling model, the dissipation per cycle is a

tradeoff between the velocity gradient and the boundary layer thickness.

The peak loss occurs at that frequency in which 6 - h. This is the

micromechanics of Biot's (1956) attenuation mechanism. It is not

important at acoustic frequencies in granular sedimentary materials.

However, the basic physics of boundary layer development carries

over into another flow model. Consider the flow through a fixed

cylindrical pore driven by an oscillatory pressure gradient (fig. 10b).

This process is clearly relevant to flow in and out of a contact gap.

The rate of energy dissipation per unit area of solid boundary is

approximately

1 2 1/22 ( ) V Dx (14)

per unit length of tube, where s is the circumference. The energy

loss per cycle is proportional to the boundary layer thickness.

Squeeze Film Elastohydrodvnamics

The compression of a contact gap (fig. 11) will drive water out

of that gap. If the length b is much greater than the width 2h

and the flow profile is fully developed, the motion of the squeeze

film is governed by the Reynold's equation

V2 3n ah (15)
2h 3
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The rate of closure of the gap ah/at is the driving or squeeze term.

It is related to the elasticity of the contact gap by

h _ (i a - a ) f(M (16)
at ii- at

gap

where iwo is the acoustic loading, M is the modulus of the
gap

gap, and f(&) is a function of the gap shape.

Phenomenalogically, this micromechanism defines a Zener relax-

ation or standard linear solid (fig. 12). The elastic grains

constitute a spring which is in series with a parallel spring

(the grain contact) and dashpot (the squeeze film). The charac-

teristic relaxation time, T, is simply

T bm (17)

gap

where the exponent m is dependent on the shape of the gap. As the

grain surfaces approach parallelism, n approaches 3. The observed

relaxations in sandstones are in the range 10 to 10 s. Thus, for

D Z 10- 3 Nsm - 2 and H g 1 GPa, the aspect ratios involved wouldgap

be in the range 10 to 10-  . In other words, the gap length is re-

quired to be 100 times the half length. This is a very flat gap,

but not unreasonable when we consider that the displacements of the

gap wall are of the order of nannometers.

For water drops isolated in small constrictions, surface tension

may be included in equation 14 by subtractin&2yw/h from the pressure.

Yw is the surface tension of water.

Propagation and Flow in a Compact Pore Neighborhood

The water saturation effects (fig. 13) have yet to be explained.

Thus far, we have considered the sites for pore pressure buildup,
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Fig. 12. Phase velocity and Q- versus frequency in a Zener

standard linear solid.
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the contact gaps, in terms of discharge into an infinite reservoir

at null pore pressure. We have not yet considered the flow in the

contiguous pore. In order to understand the effects of water satu-

ration on Q- , we need to consider flow throughout the local pore

neighborhood.

The property which defines the volume flow out the contact gap,

or constriction, into the adjacent pore, or cavity, is the admittance.

The admittance, 8, is defined as the ratio of the volume flow to

pressure excess. An effective admittance, 8e I can be defined

such that it takes into account the configuration of the pores and

gaps in the entire neighborhood (Lighthill, 1975; 1978). Such a

device allows us to map complex pore configurations such as those in

real sands and sandstones into simple models such as those in

figure 14.

If the pore neighborhood is small compared to the wavelength,

it is said to be compact. The equations of fluid motion for frequency

w can be expressed as

= - - 1 / 2  
- v /2 s

at 8  [Pf (Bf + D)

where J is the volume flow, D is the distendibility of the con-

striction walls, and S is the crossectional area. These motionso

must satisfy the linearized equations of continuity.

- -801 [0, (B + D)]"1 /2  J  (19)
at e f f ax

The pressure buildup ap/at is related to the elasticity of the contact

through equation 15. Dissipation is calculated from equation 13.
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(a)

(b)

Fig. 14. Models of the local pore neighborhood in (a) high porosity

sandstone and (b) low porosity sandstone. The contact

gap is the constriction on the left. The cavity in the

center is the contiguous pore. The closed end constric-

tion represents connected contact gaps and closed pores.

The constriction on the right constitutes the connectivity

to the pore network. e  is the admittance of thee

c~ntact gap. is Biot's structural factor.
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This system of equations provides the foundation to formulate

the model rigorously. That task is beyond the scope of this paper.

Consider the pore configuration in figure 14a to be fully water

saturated. It is subjected to pure bulk compression as sketched in

figure 15. As the entire pore neighborhood is compressed isotropically

and the compressibility of the fluid Bf is low, the pore pressure

gradient 9p/Bx is weak. Volume flow J and the dissipation per

cycle - is small. The contact gap closure dh/dt cannot occur

because the pore pressure buildup Bp/at cannot relax. The real part

of the frame modulus is very high.

On the other hand, pure shear is polarized (fig. 15). Contact

gaps having differing azimuths with respect to the polarization may

undergo compression or extension. The pore fluid is simultaneously

subjected to compression and suction. Pressure gradients ap/dx

are high. Volume flow J is high and Q is high. The pore
s

pressure buildup ap/at can relax, and gap closure dh/dt proceeds.

When the pore neighborhoods (fig. 14) are partially saturated

the situation is quite different. The high compressibility of the

fluid in the cavity allows strong pore pressure gradients to occur,

particularly under bulk compression. Volume flow and Q are high.
k

We can heuristically summarize the model with the following

proportionality

2
- (20)

i

(a) (b) (c)

where the factor (a) merely expresses the volume of viscous fluid per
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volume of the composite material, factor (b) represents the boundary

layer thickness, and factor (c) is the sum of the number of pore

pressure sites times the square of the pore pressure gradient at that

site. Factor (c) is controlled by a combination of the aspect

ratio of the gaps, the stress configuration, and the compressibility

of the fluid in the cavity.

6. GENERAL EQUATIONS FOR ACOUSTIC PROPAGATION IN POROUS MEDIA

Biot (1956) and Morse and Ingard (1968) have studied the macro-

scopic elastodynamics of a porous, two component system. These

theories track the motions and forces in the solid and fluid in two

separate equations. The solid frame is perfectly elastic. Granu-

larity is not considered.

Biot (1962) and Burridge and Keller (1981) have proposed a

generalized set of equations which can accommodate linear viscoelastic

frame moduli. To the best of my knowledge, these equations have not

as yet been exploited in the literature. A schematic breakdown of

the generalized equations is presented in figure 16. Detailed dis-

cussion is beyond the scope of this paper. We wish, however to

sketch the theory in order to discuss several predictions.

The equations of motion are for the porous, granular composite

PC + Pfw - div T (21)

and for the macroscopic motion of the pore fluid

Pfu 2k + (22)ax
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where PC - (1-0) PS + Of

Pf- (l-Sw ) Pg + OSwPw

P - density of the gas
g

P - density of the water

Sw  - water saturation

- porosity

u - displacement of the solid

w - u-U - relative displacement of the fluid and the solid

U w displacement of the fluid.

Y is the viscodynamic solid-fluid coupling operator.

- - "f~dF (23)
dt +k

The first term on the right hand side of equation 21 describes the

inertial coupling, while the second term describes the dissipation.

Pf is the macroscopic pore pressure

Pf C tr E + L (24)

where tr E is the trace of the stress tensor and C is the fluid

volume increment per unit pressure, - €div w. Equations 21 through

23 govern Biot's solid-fluid coupling, and hereafter shall be

neglected.

T is the stress tensor of the composite material

T - 2i7iE + X l tr E- (25)

where T and i are the complex Lame's constants.

The complex moduli M, N, C, and L can be given in terms

of the intrinsic material properties , KS 0 Kf , K, and G as
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(K -2

.+ + 4 (26)
- +27 i +2Q - K (26K (1-0- +, 0 )K

s f

- - (Ks -K ) -
+ Q - (27)

K6  K

and

K
L (28)(1-0_-. (28

KS Kf

K is the bulk modulus of the solid grains. The bulk modulus of the

fluid is

1 - S)B + SB , (29)
Kf w g ww

where B is the compressibility of the gas and B is the com-g w

pressibility of the water.

R and U are the linear viscoelastic frame moduli, which are

determined by the granular micromechanics. The variation of the real

e
part of K and C as a function of f rquency and water saturation is

shown in figure 17.

The compressional and shear wave velocities are given by

V 1/2
" ( ) (31)

p C

and

1/2v5 - (N)

Pc

respectively. Specific attenuation is
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Fig. 17. Theoretical modulus dispersion in sandstones as a

function of water saturation. Constant Q loss is sup-

pressed. Water-wetted curve assumes certain degree

of capillary condensation.
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Q-1 lm=__ (32)
QP 

(

Re M

and

-1 ImN (33)

Re N

7. DISCUSSION

Although the model is not yet complete, I am

reasonably confident that most of the major concepts are moving into

place.

The velocity equations reduce to the Biot-Gassmann relations at

frequencies a decade below the center frequency. This is accomplished

as the frequency dependent frame moduli K and G approach relaxed

values K and G in equations 24, 25, 29, and 30. The centerr r

frequency for Massillon sandstone is -5 kHz. Figure 18 comppres the

predictions for V and V5  vs. Sw with measured values at 550 Hz.

Clark et al. (1980), Tittmann et al. (1980), and Spencer (1981)

have added various pore fluids to dry sandstones. The fluids were of

varying composition but of similar viscosity. They found that the

fluids reduced the real part of the moduli and increased the Q-I in the

following order. From

water
ethanol
methanol (35)

n-decane
benzene
hexane

Clark et al. (1980) and Tittmann et al. (1980) suggest that the process

has something to do with the dipole moment. While Spencer (1981)
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discusses physisorption. Once again, the specific chemical properties of

importance are the chemical potential and the electrochemical.

potential The order in (35) is the order of descending F 4 and r i d%.

Spencer (1981) further claims that because the observed frequency peaks.

are depressed in the same order, these peaks must result from the

surface effect. Well it is an interesting point, but the conclusion

is wrong. From equations 14 and 15, we see that the more compliant

the contact, the greater the pore pressure gradient driving the

volume flow. Dissipation goes as the square of the pore pressure

gradient. The magnitude of the electrochemical effect on contact

compliance follows the same descending order as in (35). It stands to

reason the height of the peaks due to viscous loss would be depressed

correspondingly.

A similar argument can be used to explain the difference

between the losses in Massillon sandstone and Vycor porous glass as

reported in Murphy (1982a). Altho4gh Vyor has a surface area of

-200 m /gm and Massillon has a surface area roughly 10 m /gm

the losses in Vycor are consistently 1/6 that in Massillon at all

saturations. The difference lies in the compliance of the grain con-

tacts. Vycor has a structure which under a SEM appears similar to

sintered glass beads (fig. 19b). Massillon on the other hand has

many small aspect ratio near-contact gaps (19a). The basic dif-

ference between the contacts is sketched in figure 20. The near

contact gaps in the Massillon sandstone provide the sites necessary

for pore pressure generation.

Finally, the effect of temperature may be included in the model

by considering the temperature dependence of the viscosity. The
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Fig. 19. SLM photomicrograph of (a) Massillon sandstone and

(b) Vycor porous glass. The white bar at the base

of the photograph is the length scale.
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- - - - -- ---( b )

Fig. 20. Sketch of the contact gaps in (a) a granular 
sedimentary

material (eg. Massillon sandstone) and 
(b) Vycor porous

glass.
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Arrehenius equation predicts that

n = n e (36)

where 6 is the temperature, R is the gas constant, 7 o is the

viscosity as 8 - 0 , and E is the activation energy of the fluid.

The preliminary experimental results of T. Jones (personal communication)

are encouraging along this line of reasoning.
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